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In this paper a multiple relay arrangement for on-line process identification and 
controller tuning is proposed. The standard relay feedback method proposed by Astrom 
and Hagglund (1984) is very popular, because it is a simple and time efficient 
technique; moreover it is a closed-loop method and allows a tight control of the 
magnitude of the oscillations.  Unfortunately only the critical point of the process (i.e. 
the process frequency response at the phase lag of -π) is detected and the acquired 
information may be insufficient for a correct identification of a large class of processes.  
Since in chemical processes the duration of each experiment may be critical, multiple 
identification sessions are undesirable and impracticable; therefore several alternative 
techniques have been proposed. However the information on the critical point of the 
process must be retained, often with the need of including some information at 
frequencies near the crossover point or in the low frequency range. Friman and Waller 
(1997) introduced a two-channel relay structure in order to extract more information 
about the process, e.g. to get a point in the third quadrant of Nyquist plane, Wang and 
Yang (2000) have provided the cascade relay for multipoint identification of the 
frequency response, Balestrino et al. (2006) have proposed a technique based on a 
standard relay with a variable hysteresis width, in order to originate relay transients. 
Several variants of the standard method have been presented in literature (see Wang et 
al., 2003): most of them consider various relay connections and give rise to very 
complex waveforms, usually difficult to analyse. 
In this paper a master relay is configured as in the standard method of Astrom and 
Hagglund. Assume that the input of the master relay is periodic. The output of the 
master relay, um, is converted from real to binary format and, through a shift register or 
a chain of flip-flops, it gives rise to a sub-harmonic signal which is again converted 
from binary to real as the input to an auxiliary relay. Any sub-harmonic signal can be 
generated, but we restrict our attention to the simplest arrangement, where the sub-
harmonic signal us (the output of the auxiliary relay) shows a frequency 2-m of the 
master relay frequency. The input signal is the sum of the master and auxiliary relay 
outputs. The conditions assuring a limit cycle can be derived as in the classical approach 
of Tsypkin (1984). Eventually hysteresis can be added to the master relay, so that a 
strong robustness is assured with respect to output measurement noises. 
The implementation of this technique is straightforward by using low cost electronics; 
examples of simulation tests using Matlab implementation illustrate the technique for 
some typical plants. 
 



1. The Proposed Method  
Relay feedback is a simple, powerful, and commonly used method of finding system 
parameters useful for designing and tuning standard proportional-integral-derivative 
(PID) controllers. Consider  the standard relay feedback method proposed by Astrom 
and Hagglund (1984), as shown in Fig. 1, where the relay output amplitude is h. If the 
process has a phase lag of at least π radians most processes are brought into a condition 
of permanent oscillation. The resulting period Tc and amplitude E of the process output 
oscillation can be measured. The critical point in terms of the ultimate frequency ωC and 
ultimate gain KC can be determined by the describing function as: 
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The above analysis originates from the standard theory where the amplitude ratio of the 
fundamental output from the nonlinearity and the input of the relay are considered. In 
the case of a relay nonlinearity the relay output is a square wave. Therefore (1) is an 
acceptable approximation if and only if the linear process G(s) behaves as a low-pass 
filter.  Unfortunately only the critical point of the process is detected and the acquired 
information may be insufficient for a correct identification of a large class of processes. 
Several variants of the standard method have been presented in literature, e.g., 
Balestrino et al. (2006) have proposed a technique based on a standard relay with a 
variable hysteresis width, in order to originate relay transients, as shown in Fig.2.  
Using relay transients, instead of only stationary oscillations, more frequency points in a 
large neighbourhood of the critical frequency of the process transfer function can be 
estimate, but also this technique may require some care to be effective.  
A different implementation may consider a sub-harmonic oscillator, as illustrated in 
Fig.3. The output of a standard relay, called master relay, um, is converted from real to 
binary format and, through a shift register or a chain of flip-flops, it gives rise to a sub-
harmonic signal, which is returned from binary to real format and sent to an auxiliary 
relay. In a more general implementation, any sub-harmonic signal can be generated, but 
in this paper we restrict our attention to the simplest arrangement, where the sub-
harmonic signal us (the output of the auxiliary relay) shows a frequency 2-m of the 
master relay frequency. The sum of the master and auxiliary relay outputs (u) is the 
input signal of the process. The ratio of the amplitude of the auxiliary relay with respect 
to the amplitude of the master relay can be varied in a wide range, assuring a limit cycle 
with large frequency content. By adding a single sub-harmonic signal with frequency 
f/m to the output of the master relay with frequency f, the balance in the loop of the 
signals at frequencies f/m, 3f/m, f and 3f gives 4 complex equations allowing a direct 
evaluation up to 8 model parameters.  The relay output u(t) consists of a periodic series 
of step changes with amplitude ±Am± As and in most processes u(t) is a periodic 
function able to generate symmetric self-oscillations if the amplitude As is small and 
limited to the ratio As /Am ≤0.25.  For low-pass processes a positive amplitude ratio 
raises the limit cycle frequency above the value obtained by the approach of Astrom and 
Hagglund; the opposite effect is obtained by using a negative ratio. Asymmetric self-
oscillations are usually generated if the ratio As /Am increases. 
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Fig. 1. Standard relay feedback system. Fig 2. Modified relay feedback system. 
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Fig. 3.  Double channel relays and sub-harmonic oscillations with m = 1 

 
After recording input and output signals, the process frequency response can be 
obtained using a standard Fourier analysis as the ratio: 
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where ys(t) and us(t) are a period of the stationary oscillations of u(t) and y(t), 
respectively. The above relationship can be computed using the FFT algorithm. Since 
the method adopts spectrum analysis instead of the describing function, it will lead to 
accurate process frequency response estimation and it can identify multiple points on 
the frequency response from a single relay test. In order to extract the static gain, an 
asymmetric self-oscillation may be used. Because of the hysteresis in the master relay, 
the method is also robust in the case of output process signals corrupted by noise.  
With respect to the parasitic relay methods proposed in Wang et al., (2003), the 
proposed implementation provides an oscillation with known sub-harmonics and such 
condition assures the occurrence of self oscillations that may be studied as in the 
classical approach of Tsypkin (1984).  
 



3. An Analytic Approach 
In this section the existence conditions of a limit cycle are established following the 
analytic approach of Tsypkin (1984).  For sake of simplicity assume that the output 
um(t) of the master relay is a symmetrical square wave with frequency fm and amplitude 
Am; moreover assume that  the slave relay output is a  symmetrical square wave us(t)  
with frequency fs and amplitude As.  The output of the slave relay us(t) is synchronized 
with the output um(t) of the master relay: um(0) = us (0) , and the frequencies are such 
that: fm =N fs.  Any square wave with unitary amplitude and pulsation ω may be 
described by its Fourier series: 
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If this signal is the input of a dynamic system described by the transfer function G(s) we 
can compute the steady state output by summing up the responses to all the harmonics. 
Rewrite G(jω) as G[j(2k+1)ω] = Rk(ω) + j Ik(ω) and define the auxiliary Tsypkin 
function: 
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Note that this definition is slightly modified with respect to the original version in 
Tsypkin . Moreover define: 
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Then the conditions for the existence of a limit cycle are: 
 

,Re ( ) 0;m s sJ jω⎡ ⎤ <⎣ ⎦ ,Im ( )m s sJ j hω⎡ ⎤ = −⎣ ⎦               (6) 

 
The computation of T(jω) is analytically possible and hence the computation of 
Jm,s(jωs).  If we assume h = 0 and ωs and N, so that  AmT(jNωs) and AsT(jωs) are both in 
the same quadrant of the Nyquist plane, it is impossible to satisfy the conditions for the 
existence of the limit cycle. Of course if As = 0 we recover the classical conditions.  
For low-pass smooth systems, analytical solution can be approximated by: 
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as usually in the harmonic linearization approach, with N=2, we get: 
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If Am and As are both positive or negative then a cycle limit is possible only if G(jωs) 
and G(j2ωs) are in different quadrants of the Nyquist plane.  
If  0<As<<Am  then ωs <ω0<2ωs  with  0G( j )∠ ω = −π . 



 
4. Analysis of Process Input and Output and Identification Tests 
The performance of this new technique is illustrated for three typical chemical plants. 
The auxiliary signals provide exciting inputs to processes under test: the signals 
considered for FFT are shown in Figs. 5, 7 and 9. The actual and the estimated 
frequency responses are shown in Figs. 6, 8 and 10. All relay tests has been carried out 
with  Am = 1, Au = 0.2 and m =1, but different amplitudes have been condidered. 
Preliminary results show robustness with respect to output noisy signals, due to the 
selection of a suitable hysteresis in the master relay.  
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Fig. 4.  Example 1: Limit cycle with Am = 1, Au = 0.2 Fig. 5.  Nyquist plots. (―)  Actual, (o) Estimated. 
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Fig. 6.  Example 2: Limit cycle with Am = 1, Au = 0.2 Fig. 7.  Nyquist plots. (―)  Actual, (o) Estimated. 

Example 3:  ( )
( )2

(1 )
2 1

−− ⋅
=

+

ss eG s
s

               



0 10 20 30 40 50 60 70 80 90 100
-1.5

-1

-0.5

0

0.5

1

1.5

2

Time (s)

 

 

u(t)
y(t)

 
 

Fig. 8.  Example 1: Limit cycle with Am = 1, Au = 0.2  Fig. 9.  Nyquist plots. (―)  Actual, (o) Estimated. 
 

4. Conclusions 
A relay-based method for the estimation of the frequency response of linear process has 
been proposed.  The method has several features: 

 multiple points on frequency response can be identified from a single relay 
test;  

 the hysteresis guarantees a high robustness with respect the noise;   
 the method employs the FFT only once and the required computation burden is 

modest; 
 it can be combined with some control tuning rules to form an auto-tuner for 

control systems; 
 the implementation of this technique is straightforward by using low cost 

electronics. 
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